Exam. Code : 211003

Subject Code: 3849

M.Sc. (Mathematics) 3rd Semester

TOPOLOGY—I

Paper: MATH-572

Time Allowed—3 Hours] [Maximum Marks—100

Note:—Attempt two questions from each Unit.

All questions carry 10 marks each.

UNIT-I

- If X is any set, then prove that the collection of all one point subsets of X is a basis for the discrete topology on X.
- 2. Prove the following:
 - (i) \overline{A} is the smallest closed set containing A.
 - (ii) $\overline{\overline{A}} = \overline{\overline{A}}$.
 - (iii) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 3. Prove that, in a metric space the concept of 2nd countability, separability, and Lindelof are all equivalent.

- 4. Let X be a set, and u : ℘(X) → ℘(X) a map with the properties :
 - (i) $u(\phi) = \phi$.
 - (ii) $A \subset u(A)$ for each A.
 - (iii) $u^{\circ} u(A) = u(A)$ for each A.
 - (iv) $u(A \cup B) = u(A) \cup u(B)$ for each A, B.

Then prove that the family $\mathfrak{I} = \{ \mathcal{C}(u(A)) \mid A \in \wp(x) \}$, where $\mathcal{C}(u(A))$ denotes the complement of u(A) is a topology, and with \mathfrak{I} , $\overline{A} = u(A)$ for each A.

UNIT-II

- 5. Prove that a subspace of a subspace is a subspace of the entire space.
- 6. Let X be a locally connected space. If Y is an open subspace of X, then prove that each component of Y is open in X and hence in particular each component of X is open.
- 7. Prove that the set of real numbers is connected.
- 8. Let X be a topological space and A a connected subspace of X. If B is a subspace of X such that A ⊂ B ⊂ A, then, prove that B is connected and hence A is connected.

UNIT-III

- 9. Let X, Y be topological spaces and f: X → Y a map then prove that the following statements are equivalent:
 - (i) f is continuous.
 - (ii) $f(\overline{A}) \subset \overline{f(A)}, \forall A \subset X$.
 - (iii) $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B}) \forall B \subset Y$.
- 10. Let X be a topological space and $Y \subset X$. Prove that relative topology \mathfrak{I}_Y on Y is the smallest topology on Y for which the inclusion map $i: Y \to X$ is continuous.
- 11. Let f: X → Y and g: Y → X be continous and such that both g ∘ f = 1_X and f ∘ g = 1_Y. Prove that f is a homeomorphism and g = f⁻¹.
- 12. Prove that $f: X \to Y$ is closed map iff $\overline{f(A)} \subset \overline{f(A)}$ for each set $A \subset X$.

UNIT-IV

- 13. Let $\{Y_{\alpha} \mid \alpha \in \mathcal{A}\}$ be any family of spaces, and $f: X \to \Pi_{\alpha} Y_{\alpha}$ mapping. Then f is continuous if and only if $p_{\beta} \circ f$ is continuous for each $\beta \in \mathcal{A}$.
- 14. In the space $\Pi_{\alpha}\{Y_{\alpha} \mid \alpha \in \mathcal{A}\}\$ if $A_{\alpha} \subset Y_{\alpha}$ for each $\alpha \in \mathcal{A}$, prove that $\overline{\prod_{\alpha} A_{\alpha}} = \prod_{\alpha} \overline{A_{\alpha}}$.

- 15. Define the quotient space. Prove that if Y is a quotient space of X and Z is a quotient space of Y then Z is homeomorphic to a quotient space of X.
- 16. If β is a base for the topology of X and \mathcal{C} is a base for the topology Y, then the collection $\mathcal{D} = \{B \times C : B \in \beta, C \in \mathcal{C}\}$ is a base for the topology on $X \times Y$.

UNIT-V

- 17. Prove that every compact Hausdorff space is normal.
- 18. Prove that every normal space is regular but converse is not true.
- 19. State and Prove Urysohn's lemma.
- 20. Prove that the following three statements are equivalent:
 - (i) Y is regular.
 - (ii) For each $y \in Y$ and neighbourhood U of y, there exist a neighbourhood V of y with $y \in V \subset \overline{V} \subset U$.
 - (iii) For each $y \in Y$ and a closed set A not containing y, there exist a neighbourhood V of y with, $\overline{V} \cap A = \phi$.