http://www.gnduonline.com

http://www.gnduonline.com

SECTION-A

- Obtain three consecutive integers, each having a square factor.
 - (b) State and prove Wolstenholme's theorem.
- For Fermat numbers F_m and F_n , $m \ge n \ge 0$, prove that gcd $(F_m, F_n) = 1$.
 - (b) Let r be a primitive root of integer n. Find the necessary and sufficient condition for rk to primitive root of the integer n. 10

SECTION-B

If r is a primitive root of the odd prime p, verify that

$$\operatorname{ind}_{t}(-1) = \operatorname{ind}_{t}(p-1) = \frac{1}{2}(p-1).$$
 10

- (b) Find all quadratic residues of 17. 10
- State and prove Quadratic Reciprocity Law. 20

- (a) Prove that $\tau(n)$ is an odd integer if and only if n is a perfect square. 10
 - (b) State and prove Möbius Inversion Formula. 10
- Find all solutions (a, b, c) of $x^2 + y^2 = z^2$ with gcd(a, b, c) = 1, a even and a > 0, b > 0 and c > 0. Further, prove that ab is divisible by 12 and 60 abc.

20

SECTION-D

- Prove that the value of any infinite continued fraction is an irrational number.
 - (b) Let x be an arbitrary irrational number. If the rational number a/b, where $b \ge 1$ and gcd(a, b) = 1, satisfies $\left| x - \frac{a}{b} \right| < \frac{1}{2b^2}$ then prove that a/b is one of the convergents in the continued fraction representation of x.
- (a) Let x_1 , y_1 be the fundamental solution of $x^2 - dy^2 = 1$. Then prove that every pair of integers x_a, y_a defined by the condition

$$x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n n = 1, 2, 3,$$

is also a positive solution.

- (b) Exhibit the solution of the equation $x^2 41y^2 = -1$.
 - 10

10

http://www.gnduonline.com

(Contd.)

http://www.gnduonline.com

4483(2119)/HH-7946

500

http://www.gnduonline.com