http://www.gnduonline.com

Exam. Code : 103206

Subject Code: 1408

B.A./B.Sc. Semester—VI

PHYSICS

(Particle Physics)

Paper-B

[Maximum Marks—35 Time Allowed—3 Hours

Note: All parts of cuestion 1 in Section A are compulsory. Attempt ONE question from each Section B, C, D and E. All questions carry equal marks.

SECTION-A

- (a) Explain why Compton effect cannot be demonstrated with visible light.
 - (b) Write down the mathematical expression for Bethe-Bloch formula. What is the significance of this formula?
 - (c) What is the principle of a bubble chamber?
 - How electron synchrotron is different from proton synchrotron?
 - (e) What is the function of thallium (TI) activator in NaI scintillation detector?

http://www.gnduonline.com Write down the similarities and differences between a photon and a neutrino.

(g) Define an elementary particle. Is neutron elementary particle? $7 \times 1 = 7$

SECTION—B

Write a note on the following:

(a) Bremsstrahlung radiation

(b) Straggling.

4.3

Describe the three main processes by which gamma-rays interact with the matter. How does the interaction probability of these processes depend upon the nature of the matter and the energy of the gamma-rays?

SECTION—C

- Discuss the principle and working of the following detectors:
 - (a) Nuclear emulsion
 - (b). Solid State Nuclear Track Detector (SSNTD).

Discuss the principle, construction and working of a G. M counter. Why internal quenching is required in GM tube?

2796(2416)/QFV-6-3819

(Contd.)

http://www.gnduonline.com

http://www.gnduonline.com

SECTION-D

- 6. Describe the principle, construction and working of betatron. Obtain the betatron condition.
- 7. Write a detailed note on colliding beam machines. What are the advantages and disadvantages of colliding beam experiments over fixed target experiments?

7

SECTION—E

- 8. (a) Explain win suitable examples the conservation law of baryon number, lepton number and strangeness.
 - (b) Which conservation law is violated in the following interactions?
 - (i) $\Lambda^0 \rightarrow K^0 + \pi^0$
 - (ii) $K \rightarrow \pi^0 + e^-$
 - (iii) $p + n \rightarrow p + \Lambda^0$
 - (iv) $n \rightarrow p + \gamma$.
- Describe the various properties of quarks and antiquarks.
 On the basis of these properties determine the quark content of antiproton, antineutron, K⁺, and K⁰.