Exam. Code: 103206 Subject Code: 1193

B.A./B.Sc. 6th Semester MATHEMATICS

Paper-II

(Numerical Analysis)

Time Allowed—2 Hours]

[Maximum Marks—50

Note: — Attempt any FOUR questions. All questions carry equal marks.

- (a) Explain the graphical reason why the Bisection method is not able to estimate the roots in case of quadratic equation with repeated roots.
 - (b) Evaluate (28^{-1/4}) using Newton-Raphson method.
- 2. (a) Find the order of convergence of Newton's method.
 - (b) Find the condition under which the iteration method converges.
- 3. Solve the system of equations $10x_1 2x_2 x_3 x_4 = 3$; $-2x_1 + 10x_2 x_3 x_4 = 15$; $-x_1 x_2 + 10x_3 2x_4 = 27$; $-x_1 x_2 2x_3 + 10x = 9$ by Gauss-Seidal iteration method.

(Contd.)

- 4. (a) Use Gauss elimination method to solve the system of equations x + 4y z = -5; x + y 6z = -12; 3x y z = 4.
 - (b) Construct the table of differences for the data:

x	0	1	2	3	4	
f(x)	1.0	1.5	2.2	3.1	4.6	

Evaluate $\Delta^3 f(2)$.

6

5. (a) Find the missing values in the following table:

x	0	1	2	3	4	5	6
f(x)	5	11	22	40	1	140	_

61/2

(b) Employ Stirling's formula to compute y_{12.2} from the following table:

x	10	11	12	13	14
у	23,967	28,060	31,788	35,209	38,368

6

6. (a) The following table gives the viscosity of an oil as a function of temperature. Use Lagrange's formula to find viscosity of oil at a temperature of 140°:

Temperature	110	130	160	190
Viscosity	10.8	8.1	5.5	4.8

61/2

(b) Find y'(0) and y''(0) from the following table:

х	0	1	2	3	4	5
y	4	8	15	7	6	2

6

- 7. Solve the differential equations $\frac{dy}{dx} = 1 + xz$, $\frac{dz}{dx} = -xy$ for x = 0.3, using fourth order Runge-Kutta method. Initial values are x = 0, y = 0, z = 1. $12\frac{1}{2}$
- 8. Use Milne's predictor-corrector method to obtain the solution of the equation $\frac{dy}{dx} = x y^2$ at x = 0.8, given that y(0) = 0.0000, y(0.2) = 0.0200, y(0.4) = 0.0795, y(0.6) = 0.1762.