			Exam. Code	:	103205	
		S	ubject Cod	le :	1203	
		B.A./B.Sc.	5th Semester			
		MATHI	EMATICS			
		Pap	er—II			
		(Numbe	r Theory)			
	٠.		-			
Time Allowed—3 Hours]			[Maxim	ium l	Marks50	
Note	e :	- Attempt five questi questions from each		ting a	at least two	
		SECT	ION—A			
I.	(a) If $4x-y$ is a multiple of 3, show that $4x^2 + 7xy - 2y^2$					
		is divisible by 9.			5	

SEC

1.	(a)	If $4x-y$ is a multiple of 3, show that $4x^2+7x$	
		is divisible by 9.	5

- Show that the product of m consecutive integers is divisible by |m.
- Show that if x and y are odd integers, then 16 $|(x^4 + y^4 - 2)|$ 5
 - (b) If a, b are any two integers, not both zero, and m is a positive integer, prove that $gcd (ma, mb) = m \cdot gcd (a, b).$
- Find all integers x, y such that 147x + 258y = 369.
 - (b) For any prime p > 3, prove that $p^2 1$ is divisible by 24. 5

		$a + c \equiv (b + d) \mod a$ and $ac \equiv bd \pmod b$.	5
	(b)	Show that any positive integer of the form $3K$ has a prime factor of the form $3K + 2$.	+2 5
V.	(a)	Show that for every prime $p > 5$, either p^2-1 p^2+1 is divisible by 10.	or 5
	(b)	Solve $140x \equiv 133 \pmod{301}$.	5
		SECTION—B	
VI.	(a)	Find the least positive integer which when divide by 5, 6, 7 gives remainder 3, 1, 4 respectively.	
	(b)	If g.c.d.(a, 133) = g.c.d.(b, 133) = 1, prove the $a^{18} \equiv b^{18} \pmod{133}$.	at 5
VII.	(a)	Show that 19 is a prime using converse of Wilson theorem.	n's 5
	(b)	Find remainder when 15 is divided by 17.	5
VIII	.(a)	For even integer n, prove that $\phi(2n) = 2\phi(n)$ whe $\phi(n)$ is Euler's phi-function.	re 5
	(b)	If $n+2$, n both are primes, then show th $\phi(n+2) = \phi(n)+2$.	at 5
IX.	(a)	Show that $a^{560} \equiv 1 \pmod{561}$ if $g \cdot c \cdot d \cdot (a, 561) = 1$ however 561 is not a prime.	1, 5
	(b)	Find n such that $\phi(n) = 97$.	5
X.	(a)	If x and y are real numbers, prove that:	
	•	$[x] + [y] \leq [x+y].$	5
	(b)	Find a positive integer n such that:	
		$\mu(n) + \mu(n+1) + \mu(n+2) = 3.$	5

IV. (a) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, prove that

5400

272(2118)/DAG-7546