http:/

Exam. Code: 103205

Subject Code: 1203

http://www.gnduonline.com

http://www.gnduonline.com

B.A./B.Sc. 5th Semester MATHEMATICS Paper—I (Dynamics)

Time Allowed—3 Hours] [Maximum Marks—50 Note:— Attempt *five* questions in all selecting at least *two* from each section.

SECTION—A

 (a) A point moving with uniform acceleration in a straight line describes equal distances in time

$$t_1$$
, t_2 , t_3 ; show that $\frac{1}{t_1} - \frac{1}{t_2} + \frac{1}{t_3} = \frac{3}{t_1 + t_2 + t_3}$.

- (b) A, B, C are three points vertically below the point O such that OA = AB = BC. If the particle falls from rest at O, prove that the times of describing OA, AB and BC are as $1: (\sqrt{2}-1): (\sqrt{3}-\sqrt{2})$.
- 2. Masses P and Q in a Atwood's machine are allowed to move from rest any distance x. If P is greater than Q, show that the mass which must suddenly be removed from P at the end of distance x, so that the motion in the same sense may continue a further distance nx, is

$$\frac{(n+1)(P^2-Q^2)}{(n+1)P+(n-1)Q}.$$
 10

3. (a) Two masses m₁, m₂ are connected by an inelastic string; m₂ is placed on a smooth horizontal table and the string passes over a light smooth pulley at the edge of the table and m₁ is hanging freely. Determine the motion and the tension in the string. Find also the pressure on the pulley.

(b) A body sliding down a smooth inclined plane is observed to cover equal distances, each equal to I, in consecutive intervals of time t₁ and t₂. Show that inclination of the plane is

$$\sin^{-1}\left[\frac{2\ell(t_1-t_2)}{gt_1t_2(t_1+t_2)}\right].$$
 5,5

- (a) A particle starts from rest and moves along a straight line with an acceleration f varying as tⁿ. If v be the velocity at a distance s from the starting point, show that (n + 1)v² = (n + 2)fs.
 - (b) A particle free to move along the x-axis is subjected to a force mF₀cos pt acting along x-axis.
 At t = 0, x = 0 and v = 0. Show that at any time

t,
$$x = \frac{F_0}{p^2}$$
 (1-cos pt). Here m is the mass of the

5. A particle is performing simple harmonic motion of period T about a centre O and it passes through the position P (OP = b) with velocity v in the direction OP. Prove that the time which elapses before it comes

particle. F₀ and p are constants.

to P is
$$\frac{T}{\pi} \tan^{-1} \frac{vT}{2\pi b}$$
.

2

271(2119)/HH-8977

(Contd.)

271(2119)/HH-8977

(Contd.)

5,5

height attained. Show that range is $\frac{4u^2}{5g}$.

- (b) The maximum height of a projectile is h and angle of projection is α. Find out the difference of time when it is at height of h sin²α. 5,5
- 7. A particle is projected from O at an elevation α and after time t, the particle is at P. Prove that $\tan \beta = \frac{1}{2} (\tan \alpha + \tan \theta)$ where β and θ are respectively the inclinations to the horizontal of OP and of the direction of motion of the particle when at P. 10
- - (b) Prove that the kinetic energy of a particle of mass m moving with a magnitude of velocity v is $\frac{1}{2}$ mv².

5,5

http://www.gnduonline.com

http://www.gnduonline.com

- A particle of mass m is tied to the middle point of an elastic string of natural length 2 l and modulus λ. The ends of the string are tied to two points on a smooth horizontal table distant 2L (L > l). Find the period of small oscillation (i) along the string (ii) perpendicular to the string.
- 10. A pendulum of length l hangs against a wall inclined at an angle α to the horizontal. Show that the time of

complete oscillation is
$$2\pi \sqrt{\frac{\ell}{g \sin \alpha}}$$
.

http://www.gnduonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से

271(2119)/HH-8977

3

(Contd.)

http://www.gnduonline.com