Exam. Code : 211003

Subject Code: 3856

M.Sc. (Mathematics) 3rd Semester MATH-586: NUMBER THEORY

Time Allowed—3 Hours] [M

[Maximum Marks—100

Note: Attempt any TWO questions from each unit. All questions carry equal marks.

UNIT-I

1. (a) Solve $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$.

5

- (b) Prove that the Fermat number F₅ is divisible by 641.
- 2. State and prove Wolsten-Holme's Theorem. 10
- (a) If the integer a has order k modulo n, then prove that for h > 0, the order of ah is k / gcd (h, k) modulo n.
 - (b) If r is a primitive root of odd prime p, then prove that $r^{\frac{(p-1)}{2}} \equiv -1 \pmod{p}$.
- 4. Prove that an integer n > 1 has a primitive root if and only if n = 2, 4, p^k or $2p^k$, p odd prime.

UNIT-H

- (a) Let n be an integer possessing a primitive root and let gcd (a, n) = 1. Prove that the congruence x^k = a (mod n) has a solution if and only if a^{\phi(n)/d} = 1 (mod n).
 - (b) If r is a primitive root of the odd prime p, then prove that $\operatorname{ind}_{r}(-1) = \operatorname{ind}_{r}(p-1) = \frac{p-1}{2}$.
- 6. (a) Let r be a quadratic residue of odd prime p and ab ≡ r (mod p). Prove that a and b both are quadratic residues of p or both are quadratic non-residues of p.
 - (b) For a primitive root r of odd prime p, prove that the product of quadratic residues of p is congruent to r^{(p²-1)/4} modulo p.
- 7. State and prove Gauss Lemma. 10
- 8. (a) Prove that there are infinitely many primes of the form 5k-1.
 - (b) For an odd prime p, show that $\sum_{a=1}^{p-2} \left(\frac{a (a+1)}{p} \right) = -1.$

UNIT—III

- 9. (a) Find the form of all positive integers n such that $\tau(n) = 10$. What is the smallest positive integer n for which $\tau(n) = 10$?
 - (b) Find $\sum_{d/n} \mu(d)$ for each positive integer $n \ge 1$. 5

4483(2118)/DAG-7761

2

(Contd.)

5

- (b) For a perfect number n, prove that $\sum_{i=1}^{n} \frac{1}{d} = 2$. 5
- 11. Prove that if for $k \ge 1$, $2^k 1$ is prime, then $2^{k-1}(2^k 1)$ is perfect and every even perfect number is of this form.
- 12. Prove that an odd prime p is expressible as sum of two squares if and only if $p \equiv 1 \pmod{u}$.

UNIT-IV

- 13. Prove that a positive integer n is expressible as sum of two squares if and only if each of its prime factors of the form 4 k + 3 occurs to an even power.
- 14. Prove that any prime can be written as sum of four 10 squares.
- 15. State and prove Hurwitz Theorem. 10
- 16. (a) For two successive terms $\frac{a_1}{h}$ and $\frac{a_2}{h}$ of F_n , prove that $b_1 + b_2 > n$.
 - (b) If n is a positive integer and x is a real number, then prove that there is a fraction $\frac{a}{b}$ such that

$$\left| x - \frac{a}{b} \right| \le \frac{1}{b(n+1)}.$$

UNIT--V

17. (a) If $\frac{p_n}{q_n}$ is the nth convergent of the continued fraction

$$\langle a_0, a_1, ..., a_n \rangle$$
, show that $\langle a_n, a_{n-1}, ..., a_n \rangle = \frac{q_n}{q_{n-1}}$.

- (b) Evaluate <-3, 2, 4, 5, 2>. 5
- 18. (a) Expand $\frac{5+\sqrt{37}}{4}$ as continued fraction. 5
 - (b) Prove that the even convergents of infinite continued fraction forms a strictly increasing sequence.
- 19. (a) Prove that if p and q are positive integers such that $p^2 - dq^2 = 1$, then $\frac{p}{a}$ is a convergent of the continued
 - fraction expansion of \sqrt{d} . 5
 - (b) Show that $x^2 dy^2 = -1$ has no solution if $d \equiv 3 \pmod{4}$.
- 20. Prove that if (x_1, y_1) is the fundamental solution of $x^2 - dy^2 = 1$, then all positive solutions are given by (x_n, y_n) , where x_n, y_n are the integers such that :

$$x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^0, n = 1, 2, 3, ...$$

http://www.gnduonline.com

Further find the fundamental solution of $x^2 - 48y^2 = 1$.