Exam. Code 211002 Subject Code: 5542

M.Sc. (Mathematics) 2nd Semester ALGEBRA-II

Paper-MATH-563

Time Allowed—3 Hours [Maximum Marks—100

Note: The candidates are required to attempt two questions from each unit. Each question carries equal marks.

UNIT-I

- (a) Prove that an irreducible element in a PID is always prime.
 - Prove that every Euclidean Domain is a PID.
- Prove that F[x], F field, is an Euclidean ring.
 - If R is an integral domain with unit element, then prove that any unit in R[x] must be unit in R.
- 3. (a) Is **Z**[x] a Principal Ideal Domain? Justify your answer.
 - (b) Prove in UFD, two non-zero elements possess HCF. 5
- Prove that a if a ring R is PID then it is UFD. Is the converse true? Justify. 10

UNIT-II

- 5. (a) If a, $b \in K$ are algebraic over F such that [F(a): F] = m and [F(b): F] = n and gcd(m, n) = 1, then prove that [F(a, b) : F] = mn.
 - (b) Prove that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$ is a simple extension.
- (a) Give an example of an algebraic extension of a field 6. which is not finite.
 - (b) For a prime p, find the degree of splitting field of $x^p - 1$ over \mathbb{O} .
- (a) If K is algebraic over E and E is algebraic over F, 7. then prove that K is algebraic over F. 5
 - (b) Prove that the splitting field of a polynomial over F is unique upto F-isomorphism.
- (a) Let θ be a root of an irreducible polynomial 8. $x^3 - 2x - 2$. Then find $\frac{1+\theta}{1+\theta+\theta^2}$ in Q(θ).
 - (b) Let f(x) be a non-constant polynomial over field F, then prove that there exists an extension E of F in which f(x) has a root. 5

UNIT-III

- Prove that a regular n-gon is constructible if and only if 9. $\varphi(n)$ is a power of 2. 10
- Prove that the characteristic of a finite field F is prime number say p and F contains a subfield isomorphic to \mathbb{Z}_n .
 - (b) Construct a field with 27 elements.

7393(2518)/CTT-39318_{http://www.gnduonline.com}

5

- 11. (a) Prove that the multiplicative group of non-zero elements of a finite field is cyclic.
 - (b) Show that all the roots of an irreducible polynomial over finite field are distinct.
- 12. Prove that a finite separable extension of a field is simple.

UNIT-IV

- 13. Prove that for a Galois extension E/F, there is 1-1 correspondence between the subgroups of G(E/F) and the subfields of E containing F.
- 14. Let $E = \mathbb{Q}(\sqrt[3]{2}, w)$, where $w^3 = 1$, $w \ne 1$. Let $H \subseteq G(E/\mathbb{Q})$ and $H = {\sigma_1, \sigma_2}$ where σ_1 is the identity map and $\sigma_2(\sqrt[3]{2}) = \sqrt[3]{2}w$ and $\sigma_2(w) = w^2$. Find E_H .
- 15. Suppose that the Galois group G(E/F) of a polynomial f(x) over F is a solvable group, prove that E is solvable by radicals over F.
- 16. (a) Give an example each of a polynomial which is solvable by radicals and a polynomial which is not solvable by radicals.
 - (b) Express $x_1^3 + x_2^3 + x_3^3$ as a rational function of elementary symmetric function.

UNIT-V

- 17. State fundamental theorem of finitely generated module over PID. Prove that a finitely generated torsion-free module over PID is free.
- 18. State and prove Schur's lemma for simple modules.

- Prove that over PID, a submodule of finitely generated module is finitely generated. Is the result true in general?
 Justify.
- 20. Let R be a commutative ring with unity and M, N free R-modules. Prove that $Hom_R(M, N)$ is a free R-module if M is finitely generated. Further if N is also finitely generated, then find the basis of $Hom_R(M, N)$.

http://www.gnduonline.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से

10