http://www.gnduonline.com

Exam. Code: 107405 Subject Code: 1851

http://www.gnduonline.com

(Contd.)

http://www.gnduonline.com

B.Sc. Biotechnology 5th Semester

BT-1: rDNA TECHNOLOGY—A

Time Allowed—3 Hours] [Maximum Marks—40

SECTION-A

Note: — Attempt ALL questions — 1 mark each.

- 1. How bacterial alkaline phosphatase work?
- Define restriction enzymes.
- 3. What are phagemids?

http://www.gnduonline.com

- 4. Why origin of replication is important in plasmids?
- 5. How calcium chloride helps in making cells competent?
- 6. What factors define the transformation efficiency?
- 7. What is the principle of non-radioactive labeling?
- 8. How end labeling of probes is done?

SECTION-B

Note: — Attempt *five* questions by selecting at least *one* from each unit. — 4 marks each.

UNIT-I

- Discuss the enzymes used for blunt end sticky end ligation with their mode of action.
- How thermostable DNA polymerases have made the PCR routinely possible? Explain it.

UNIT-II

- Explain the genome organization of M13.
- 4. In order to clone a DNA fragment of ~200 kb, which vector would be appropriate and why?

UNIT-III

- Among CaCl₂ and electroporation, which method is more efficient for transformation and why? Explain it.
- 6. Define transfection. What kinds of reagents are used for transfection and how its efficiency can be improved?

UNIT-IV

- In some of the applications radioactive probes are preferred over non-radioactive probes. Why? Explain with specific examples.
- Discuss the advantages of non-radioactive labelling method of probes.

SECTION-C

Note: Do any two questions — 6 marks each.

- Define the functions of Polynucleotide kinase, DNase-I and Nuclease S-I and discuss their applications.
- Explain the salient features with illustrative description of pBR322 plasmid.
- Why hybridization of nucleic acids is central to many molecular biological techniques? Discuss it.
- Discuss in detail the different systems for the detection of labeled probes and their applications.

591(2119)/HH-6819 2 400