Exam. Code: 103201 Subject Code: 1304

B.A./B.Sc. Semester-I

PHYSICS

Paper-A

(Mechanics)

Time Allowed—3 Hours]

[Maximum Marks—35

Note: Section A is compulsory. Attempt ONE question from each of the Sections B, C, D and E.

SECTION-A

- I. (i) Prove that $\hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}}$.
 - (ii) What is Conservative Force? How is it related to potential energy?
 - (iii) Prove that angular momentum of a particle moving under central force is conserved.
 - (iv) Is earth an inertial frame of reference?
 - (v) At what point on the surface of the earth, will the plane of vibration of the Focault's pendulum rotate once a day?
 - (vi) What happens to the velocities and kinetic energies of the individual particles after an elastic collision in the centre of mass system?

(vii) How does a spherical top differs from a symmetric top?

7×1=7

SECTION-B

- II. (i) Derive the expression for volume element in spherical polar coordinates.
 - (ii) Define Solid Angle. Obtain an expression for solid angle subtended by the surface of a sphere at its centre.

OR

- III. (i) Starting from the expression for the velocity $\vec{v} = \hat{r}\hat{r} + r\hat{\theta}\hat{\theta} + r\hat{\phi}\sin\theta\hat{\phi}$ obtain an expression for the acceleration in spherical polar coordinates.
 - (ii) Calculate the volume of a parallelopiped formed by the vectors $\vec{A} = 3\hat{i} 4\hat{j} + 5\hat{k}$, $\vec{B} = 2\hat{i} + 3\hat{j} \hat{k}$ and $\vec{C} = \hat{i} + 4\hat{j} + 3\hat{k}$.

SECTION-C

IV. Derive the equation of the orbit for an attractive inversesquare law of force and also deduce its solution.

OR

V. Determine the turning points of a particle moving under central force. Show how the total energy is related to the shape of trajectory.

41(2116)/RRA-4349

2

(Contd.)

(Contd.)

++	Herr		~nA	1124	1:	.com
ււր.	// W	ww	.gna	uon	ше	.com

SECTION-D

VI. Discuss the effect of coriolis force on the free fall of a body from a height H above the surface of earth. 7

OR ·

VII. Discuss the variation of g with Latitude.

SECTION-E

VIII. What is differential and scattering cross section? Obtain Rutherford's scattering formula.

OR

IX. Derive the Euler's equations of rotation of a rigid body about a fixed point.